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LElTER TO THE EDITOR 

Metastable states of the SK model of spin glasses 

R D Henkel and W Kinzel 
Institut fur Theoretische Physik 111, Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 
16, D 6300 Giessen, Federal Republic of Germany 

Received 20 March 1987 

Abstract. The remanent magnetisation and energy at zero temperature are investigated 
numerically for the infinite-range Ising spin glass. Three different relaxation processes are 
considered: sequential, random and maximum spin flip. It is shown that most of the 
metastable states are unstable against one spin flip only. 

One of the characteristic properties of spin glasses is the existence of a huge number 
of metastable states (for a recent review see Binder and Young (1986)). Metastable 
states are spin configurations which are separated by energy barriers from other 
configurations; they are the origin of slow glassy dynamics. A well studied and 
successful model of spin glasses is the infinite-range Ising spin model with random 
couplings, the SK model (Sherrington and Kirkpatrick 1975). In fact, the number of 
metastable states has been calculated analytically (Bray and Moore 1980, De Dominicis 
et a1 1980, Tanaka and Edwards 1980). 

The SK model is an example of many other systems which have complex cooperative 
behaviour due to the existence of many stable states. Therefore, this model is discussed 
in the context of neural networks (Hopfield (1982), for an introduction see Kinzel 
(1985)), random Boolean networks (Derrida and Flyvbjerg 1986) and hard combina- 
tional optimisation problems (Kirkpatrick et al 1983). 

Although much is known about the thermal equilibrium properties of the SK model 
(Binder and Young 1986), much less is known about the structure of the metastable 
states, their energy barriers and the dynamics in the multivalley structure of the energy. 
Recent numerical simulations have shown that the metastable states decay to thermal 
equilibrium at non-zero temperature (Kinzel 1986) contrary to the often used picture 
of valleys with infinite energy barriers, which seems to be true for the structure of 
equilibrium states (Bray and Moore 1980, Mackenzie and Young 1982, Parisi 1983). 

In this letter we study the saturated remanent magnetisation of the SK model at 
zero temperature. This means that in the initial state all spins are pointing up (an 
infinitely strong magnetic field is applied). Then the system relaxes by decreasing its 
energy at zero temperature and zero magnetic field. We consider single spin-flip 
dynamics only. Even then different algorithms for the decay of the energy are possible 
and we compare the following spin flips. 

(a) sequential: the spins are updated sequentially. 
( p )  random: the spins are visited and updated in a random sequence. 
( y )  maximum: the spin with the largest internal field pointing opposite to it is 

flipped. 
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These processes are iterated until each spin points into the direction of its internal 
field, i.e. until each configuration has relaxed to a final metastable state. 

The first two algorithms a and p correspond to the usual Monte Carlo procedures 
at zero temperature, while the maximum flip y is the steepest descent of the energy. 

The energy per spin of the SK model is given by 
1 
N i < j  

E = -- JQSiSj 

where Si = i l ,  i = 1, .  . . , N and the Jo are independent random variables with a 
Gaussian distribution of zero mean and variance J2/( N - 1). 

The magnetisation is defined by 

1 
N i  

M = - L S i .  

We are interested in the mean values ( E )  and ( M )  when averaged over the 
distribution of bonds Jij .  In the ground state, i.e. the configuration Si with the lowest 
energy, one finds for N + 00 (Parisi 1980) 

(Eo) = -0.7633 * 0.00015 = Eo 
( 3 )  

(M,)=O.O= M 8 .  

The last equation holds with probability one, since energy and magnetisation are 
self-averaging (Young et a1 1984). This property also seems to hold for the metastable 
states obtained by relaxation (Kinzel 1986). Finding the ground-state energy may be 
considered as a problem of NP-complete combinational optimisation; numerically a 
good estimate of Eo can be found by simulated annealing (Grest et al 1986). 

Figure 1 shows the results for the three different relaxation processes a, p and y 
described above. The bars show the standard deviations for the random flip a ;  the 
standard deviations of the two other algorithms are basically the same. The results 
indicate that both ( ( E  -(E))’)  and (( M - (M))’)  go to zero with 1/ N. Hence the energy 
and the magnetisation of the corresponding metastable states are self-averaging. Since 
figure 1 shows averages over 1000 samples the statistical error is & times smaller than 
the standard deviations. 

The mean energy shown in figure l ( a )  seems to extrapolate with 1 / JN  to its value 
of the infinite system. The sequential flip a and the random flip p give the same 
metastable energy within the statistical error. The maximum flip y leads to an energy 
which seems to be somewhat higher. 

We estimate 

-0.704 * 0.005 J for a and p E = {  for y. 
-0.696 i 0.005 J (4) 

Hence the final energy of the relaxation processes is about 8% and 9% higher than 
the ground-state energy, respectively. Therefore, the relaxation at zero temperature is 
a competition between the number of traps (metastable states) and the energy which 
drives the process. If we chose a metastable state at random we would find with 
probability one a state with energy E,  = -0.506J since there are exp(aN)  many states 
with a ( & )  = 0.2 (Bray and Moore 1980). On the other hand, one has a ( E o )  = 0.0 and 
hence there are only a few ground states with Eo= -0.7633J. The relaxation leads 
neither to the most probable states nor to the states with lowest energy; it gives an 
intermediate energy. According to the analytical calculations there are exp( aN)  with 
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Figure 1. ( a )  The energy E in units of the ground-state energy E, = -0.76335 and ( b )  the 
remanent magnetisation M ,  of the metastable states obtained from relaxation plotted as 
functions of system size N for random flip (0), sequential flip ( V )  and maximum flip (0). 
The bars show the standard deviations of E and M ,  for 1000 samples and random spin 
flip. The standard deviations for sequential and maximum flip have essentially the same 
magnitude. The final magnetisation obtained by parallel updating (*) (Gardner et a /  1987) 
is included in (b) .  

cr(-O.7)-0.1 many states with such an energy. However, we do not know whether 
all these states can be reached by relaxation processes. 

The remanent magnetisation is shown in figure l ( b ) .  Again random and sequential 
flip lead to the same result within statistical error. However, the maximum flip gives 
a magnetisation which is about 50% higher than the values of the two other processes. 

We estimate for N + CO 

-0.13 * O . O l J  for CY and p M = {  for y. 
-0.18 * 0.01J 

Note the magnetisation is identical to the overlap between the initial and final state. 
Due to the randomly distributed bonds one obtains the same result for a random initial 
state $ instead of the fully aligned one Sp = +l. Therefore, if 3: is a random initial 
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state and si its final configuration, the average overlap 

1 

N i  
q = - c ( 3: Si) 

is the same as the average magnetisation of equation (5). 
The remanent magnetisation may be used for an estimate of the number of flipped 

spins, namely for N = 256 and the maximum flip y we find that only 2.6% of the spins 
are flipped more than once. Therefore, the fraction pf of flipped spins is given by 

pf';( 1 - M ) .  (7) 
For random (sequential) updating the error of equation (7) is larger; 10.8% (10.1'/0) 
of the spins are flipped twice and 2.8% (1.5%) three times. The total duration of 
the relaxation process is different for the three algorithms. For N = 256 we obtain 
for the number of spin flips n divided by the number of spins N that n/ N = 0.73 for 
the random flip a, n/ N = 0.65 for the sequential flip p and n/ N = 0.42 for the maximum 
flip y. In the last case the energy decrease per spin flip is maximal, but since the total 
number of flipped spins is small compared to the two other algorithms the final energy 
is higher. It is, however, surprising that the random and sequential flips give the same 
energy and magnetisation although the number of spin flips is different. 

The SK model may be considered as a random network of two-state elements. 
Recently the parallel dynamics of this model has been investigated (Gardner et al 
1987). However, since this dynamics does not necessarily lower the energy one obtains 
cycles of length two in the final state with high energy. The remanent magnetisation 
alternates between zero and a non-zero value M ,  which we have included in figure 
1( b )  for comparison. Hence the overlap to a random initial state is higher for parallel 
updating than the one obtained by single spin-flip dynamics. 

In order to understand the dynamics of spin glasses, in particular far from equili- 
brium, one needs knowledge about the structure of phase space with respect to energy 
barriers between metastable states. Not much is known about energy barriers in 
disordered systems in general. Recent numerical studies of the SK model indicate that 
metastable states are not separated from equilibrium states by infinitely high energy 
barriers (Kinzel 1986). 

We have investigated whether the metastable states obtained from sequential spin 
flip are stable against one spin flip. That means that the system increases its energy 
by one spin flip only and then relaxes again. We have studied the following algorithm. 

( i )  The spin S, with the largest internal field is flipped and kept fixed. 
(i i)  The system relaxes by sequential spin flip without considering S, .  
(iii) After one sweep through the system the spin Si is again included in the 

relaxation process. 
Figure 2 shows that this process shifts the distribution of energies to lower values. 

Hence many of the metastable states are unstable against one spin flip and lower the 
energy. If Si denotes the metastable state obtained from sequential spin flip and E its 
energy, this state may decay to a new state si and a new energy E after the stability 
check described above. The overlap 

1 
N i  

q = - sigi 

is a measure of h?w far the state has moved in phase space. The computed energy 
release A E  = E - E  is plotted as a function of q in figure 3. Our results indicate that 
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Figure 2. Distribution of energies for N = 512 spins and lo4 samples. Broken curve: 
metastable states obtained from sequential spin flip. Full curve: metastable states after the 
stability check described in the text. 
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Figure 3. Energy decrease AE as a function of overlap 4 for the stability check ( N  = 512 
and lo4 samples). The intensities of the dots scale logarithmically with the number of 
samples. 

for N + c o  one obtains a well defined function A E ( q ) .  For larger distances one finds 
a larger energy decay. However, in the thermodynamic limit the state does not move 
macroscopically far away; the average energy decay AE and the average distance 1 - q 
go to zero for N + 00. Figure 4 shows that the total distance (1 - q )  N and the total 
energy decay AEN increase with J N .  On average, the energy increase made by one 
spin flip leads to a new state which has J N  spins changed. Figure 4 shows that only 
15% of the metastable states do not move at all by our stability check. 

In summary, the relaxation process at zero temperature from a totally magnetised 
state to a state with remanent magnetisation is a complicated competition between the 
number of metastable states and the decrease of energy. The system neither falls into 
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Figure4. Energy decrease AE, overlap q and fraction f of states which do not move by 
the stability check as a function of system size N. 

one of the most probable states nor into the state of lowest energy. Random and 
sequential updating of the spins gives the same energy and magnetisation in the final 
metastable states; both values are lower than the ones obtained from steepest descent. 
Most of the metastable states are unstable against increasing the energy by one spin 
flip. Hence these states are not the bottoms of deep smooth valleys in energy space; 
there are many metastable states with low-energy barriers very close to each other. 
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calculations were done on the Cray XMP, Kemforschungsanlage Jiilich and the Cyber 
180-860. We would like to thank S Diederich, H Horner and M Opper for useful 
discussions. 
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